Merge Sort
Merge sort is one of the most efficient sorting algorithms. It is based on the divide-and-conquer strategy. Merge sort continuously cuts down a list into multiple sublists until each has only one item, then merges those sublists into a sorted list.
Time complexity:
The time complexity of Merge Sort isθ(Nlog(N)) in all 3 cases (worst, average, and best) as merge sort always divides the array into two halves and takes linear time to merge two halves.
Space complexity:
Space complexity of Merge sort is O(n).
Java
python
JavaScript
c
// JavaScript program for Merge Sort
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
function merge(arr, l, m, r)
{
var n1 = m - l + 1;
var n2 = r - m;
// Create temp arrays
var L = new Array(n1);
var R = new Array(n2);
// Copy data to temp arrays L[] and R[]
for (var i = 0; i < n1; i++)
L[i] = arr[l + i];
for (var j = 0; j < n2; j++)
R[j] = arr[m + 1 + j];
// Merge the temp arrays back into arr[l..r]
// Initial index of first subarray
var i = 0;
// Initial index of second subarray
var j = 0;
// Initial index of merged subarray
var k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
}
else {
arr[k] = R[j];
j++;
}
k++;
}
// Copy the remaining elements of
// L[], if there are any
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
// Copy the remaining elements of
// R[], if there are any
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// l is for left index and r is
// right index of the sub-array
// of arr to be sorted */
function mergeSort(arr,l, r){
if(l>=r){
return;//returns recursively
}
var m =l+ parseInt((r-l)/2);
mergeSort(arr,l,m);
mergeSort(arr,m+1,r);
merge(arr,l,m,r);
}
// UTILITY FUNCTIONS
// Function to print an array
function printArray( A, size)
{
for (var i = 0; i < size; i++)
document.write( A[i] + " ");
}
var arr = [ 12, 11, 13, 5, 6, 7 ];
var arr_size = arr.length;
document.write( "Given array is
");
printArray(arr, arr_size);
mergeSort(arr, 0, arr_size - 1);
document.write( "
Sorted array is
");
printArray(arr, arr_size);
/* Java program for Merge Sort */
class MergeSort {
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int[n1];
int R[] = new int[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarray array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
}
else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r)
{
if (l < r) {
// Find the middle point
int m = l + (r - l) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
/* A utility function to print array of size n */
static void printArray(int arr[])
{
int n = arr.length;
for (int i = 0; i < n; ++i)
System.out.print(arr[i] + " ");
System.out.println();
}
// Driver code
public static void main(String args[])
{
int arr[] = { 12, 11, 13, 5, 6, 7 };
System.out.println("Given Array");
printArray(arr);
MergeSort ob = new MergeSort();
ob.sort(arr, 0, arr.length - 1);
System.out.println("\nSorted array");
printArray(arr);
}
}
# Python program for implementation of MergeSort
def mergeSort(arr):
if len(arr) > 1:
# Finding the mid of the array
mid = len(arr)//2
# Dividing the array elements
L = arr[:mid]
# into 2 halves
R = arr[mid:]
# Sorting the first half
mergeSort(L)
# Sorting the second half
mergeSort(R)
i = j = k = 0
# Copy data to temp arrays L[] and R[]
while i < len(L) and j < len(R):
if L[i] <= R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
# Checking if any element was left
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
# Code to print the list
def printList(arr):
for i in range(len(arr)):
print(arr[i], end=" ")
print()
# Driver Code
if __name__ == '__main__':
arr = [12, 11, 13, 5, 6, 7]
print("Given array is", end="\n")
printList(arr)
mergeSort(arr)
print("Sorted array is: ", end="\n")
printList(arr)
/* C program for Merge Sort */
#include
#include
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;
/* create temp arrays */
int L[n1], R[n2];
/* Copy data to temp arrays L[] and R[] */
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays back into arr[l..r]*/
i = 0; // Initial index of first subarray
j = 0; // Initial index of second subarray
k = l; // Initial index of merged subarray
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
}
else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy the remaining elements of L[], if there are any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy the remaining elements of R[], if there are any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
if (l < r) {
// Same as (l+r)/2, but avoids overflow for
// large l and h
int m = l + (r - l) / 2;
// Sort first and second halves
mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
int i;
for (i = 0; i < size; i++)
printf("%d ", A[i]);
printf("\n");
}
/* Driver code */
int main()
{
int arr[] = { 12, 11, 13, 5, 6, 7 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printf("Given array is \n");
printArray(arr, arr_size);
mergeSort(arr, 0, arr_size - 1);
printf("\nSorted array is \n");
printArray(arr, arr_size);
return 0;
}