Insertion Sort
Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.
Time Complexity:
1)The best-case time complexity of insertion sort is O(n).
2)The average case time complexity of insertion sort is O(n2).
3)The worst-case time complexity of insertion sort is O(n2).
Space Complexity:
The space complexity of insertion sort is O(1).
Java
python
JavaScript
c
// Javascript program for insertion sort // Function to sort an array using insertion sort function insertionSort(arr, n) { let i, key, j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1], that are greater than key, to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // A utility function to print an array of size n function printArray(arr, n) { let i; for (i = 0; i < n; i++) document.write(arr[i] + " "); document.write("
"); } // Driver code let arr = [12, 11, 13, 5, 6 ]; let n = arr.length; insertionSort(arr, n); printArray(arr, n);// Java program for implementation of Insertion Sort public class InsertionSort { /*Function to sort array using insertion sort*/ void sort(int arr[]) { int n = arr.length; for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1; /* Move elements of arr[0..i-1], that are greater than key, to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } /* A utility function to print array of size n*/ static void printArray(int arr[]) { int n = arr.length; for (int i = 0; i < n; ++i) System.out.print(arr[i] + " "); System.out.println(); } // Driver method public static void main(String args[]) { int arr[] = { 12, 11, 13, 5, 6 }; InsertionSort ob = new InsertionSort(); ob.sort(arr); printArray(arr); } };
# Python program for implementation of Insertion Sort # Function to do insertion sort def insertionSort(arr): # Traverse through 1 to len(arr) for i in range(1, len(arr)): key = arr[i] # Move elements of arr[0..i-1], that are # greater than key, to one position ahead # of their current position j = i-1 while j >= 0 and key < arr[j] : arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Driver code to test above arr = [12, 11, 13, 5, 6] insertionSort(arr) for i in range(len(arr)): print ("% d" % arr[i])
// C program for insertion sort #include
#include /* Function to sort an array using insertion sort*/ void insertionSort(int arr[], int n) { int i, key, j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1], that are greater than key, to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // A utility function to print an array of size n void printArray(int arr[], int n) { int i; for (i = 0; i < n; i++) printf("%d ", arr[i]); printf("\n"); } /* Driver program to test insertion sort */ int main() { int arr[] = { 12, 11, 13, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]); insertionSort(arr, n); printArray(arr, n); return 0; }